Financement : CSRP/Projet Petits Pélagiques

Bioécologie et exploitation des petits pélagiques au Sénégal

Rapport final

Dr Djiga THIAO : Chargé de recherches au CRODT

Juin 2012
SOMMAIRE

Liste des tableaux et figures .. 4

1 Cadre général de l’étude .. 5

1.1 Contexte et justification de l’étude .. 5

1.2 Objectifs et résultats attendus de l’étude ... 6

2 Approche méthodologique ... 6

2.1 Revue documentaire sur les petits pélagiques .. 6

2.2 Opérations de collecte d’informations ... 6

2.2.1 Focus group avec les acteurs locaux .. 6

2.2.2 Exploitation de bases de données .. 7

2.3 Procédure d’analyse des informations ... 7

2.3.1 Analyse qualitative des informations ... 7

2.3.2 Analyse quantitative des données .. 7

3 Bioécologie des petites pélagiques de la Sous Région .. 7

3.1 Identification des principales espèces de petits pélagiques ... 7

3.2 Bioécologie des petits pélagiques .. 8

3.2.1 Bioécologie des sardinelles .. 8

3.2.2 Bioécologie des chichards .. 9

3.2.3 Bioécologie des autres espèces ... 10

3.3 Caractéristiques l’environnement côtier sénégalais ... 11

3.3.1 Aspects géomorphologiques des côtes .. 11

3.3.2 Hydrologie des côtes sénégalaises .. 12

3.3.3 Particularités du milieu estuarien .. 15

4 Effet de l’environnement sur les petits pélagiques ... 16

4.1 Notion de facteur écologique et loi de tolérance ... 16

4.2 Généralité sur les effets des facteurs physico-chimiques .. 17

4.2.1 L’effet de la température ... 17

4.2.2 L’effet de la salinité ... 18

4.2.3 L’effet des autres facteurs physico-chimiques .. 18

4.3 Particularité du phénomène d’upwelling ... 20

5 Systèmes de suivi de l’exploitation des petits pélagiques .. 22
5.1 Suivi de la pêche artisanale... 22
 5.1.1 Le recensement des unités de pêche... 22
 5.1.2 Les enquêtes sur les activités de pêche ... 22
 5.1.3 Le traitement des données .. 23
5.2 Enquêtes au débarquement de la pêche industrielle 24
5.3 Description des procédures d’évaluation des stocks 25
 5.3.1 Evaluation directe par campagnes acoustiques 25
 5.3.2 Evaluation indirecte par les statistiques de pêche 26
6 Dynamique des pêcheries et état d’exploitation des stocks 27
 6.1 Effort de pêche des flottilles ciblant les petits pélagiques 27
 6.1.1 Effort de la flottille de pêche artisanale 27
 6.1.2 Effort de la flottille de pêche industrielle 29
 6.2 Evolution des débarquements de petits pélagiques 30
 6.2.1 Composition spécifique des débarquements de la pêche artisanale 30
 6.2.2 Dynamique spatiale des débarquements de la pêche artisanale 31
 6.2.3 Composition spécifique des débarquements de la pêche industrielle ... 34
 6.3 Etat d’exploitation des stocks de petites pélagiques 35
 6.3.1 Evolution des rendements de pêche .. 35
 6.3.2 Evolution des tailles au débarquement ... 35
 6.3.3 Diagnostic de l’état des stocks .. 38
7 Recommandations d’aménagement et perspectives de recherche 40
 7.1.1 Recommandations d’aménagement ... 40
 7.1.2 Perspectives de recherche ... 42
Références bibliographiques .. 44
Liste des tableaux et figures

Tableau 1 : Etat d’exploitation des stocks et recommandations d’aménagement................. 42

Figure 1 : Processus de génération de l’upwelling... 13
Figure 2 : Zones d’upwelling côtier en atlantique nord-est africain.................................... 14
Figure 3 : Représentation schématique de la loi de tolérance ... 17
Figure 4 : Schéma simplifié des interactions espèces-environnement 20
Figure 5 : Importance du recrutement en fonction de l’upwelling.. 22
Figure 6 : Processus de collecte et de traitement des données en pêche artisanale................. 24
Figure 7 : Nombre d’unités de pêche artisanale selon l’engin de pêche.............................. 28
Figure 8 : Effort de pêche artisanale selon l’engin de pêche .. 29
Figure 9 : Nombre de bateaux sardiniers opérationnels... 30
Figure 10 ; Débarquements totaux de la pêche artisanale selon l’espèce............................... 31
Figure 11 : Débarquements de sardinelles ronde selon le centre de pêche......................... 32
Figure 12 : Débarquements de sardinelles plate selon le centre de pêche............................ 33
Figure 13 : Débarquements d’ethmalose selon le centre de pêche 33
Figure 14 : Débarquements totaux de la pêche sardinière selon l’espèce.............................. 34
Figure 15 : Evolution des rendements de pêche (cpue) selon l’espèce................................. 35
Figure 16 : Evolution de la taille moyenne de la sardinelles ronde 36
Figure 17 : Evolution des la taille moyenne de la sardinelles plate.................................... 37
Figure 18 : Evolution des la taille moyenne de l’ethmalose ... 37
1 Cadre général de l’étude

1.1 Contexte et justification de l’étude

Au niveau national les efforts sont surtout axés sur le renforcement des capacités nationales dans les domaines de la gouvernance des pêches, de la lutte contre la pêche illégale et de l’accroissement de la valeur ajoutée des produits halieutiques. Ainsi, dans le but d’inverser les tendances encore lourdes de son système de gestion des pêcheries et du développement de son économie halieutique, le Sénégal a opté, entre autres, pour la mise en œuvre d’une approche de cogestion des pêcheries artisanales. La cogestion appelle l’implication et la participation effective des communautés de base dans les décisions de gestion et d’aménagement. Le succès, l’extension et la pérennisation de l’approche de cogestion dépendent essentiellement de la fonctionnalité des cadres de concertation mis en place pour une bonne gouvernance locale des pêcheries artisanales.

En plus de la forte variabilité due aux changements des conditions environnementales, les ressources pélagiques subissent une forte pression de pêche pendant qu’elles traversent les eaux territoriales des quatre États côtiers. Cette situation risque de compromettre la durabilité des pêcheries associées qui contribuent significativement à l’économie du Sénégal en termes de devises et à l’autosuffisance alimentaire. Ainsi, consciente de la rareté de cette ressource d’une importance capitale, la Direction des Pêches Maritimes (DPM) a alors commandité une étude sur la biologie et l’écologie des petits pélagiques afin de contribuer à une meilleure conservation compatible avec une exploitation durable.
1.2 Objectifs et résultats attendus de l’étude

L’objectif principal de l’étude est de contribuer à une meilleure connaissance des aspects liés à la biologie et à l’écologie des petits pélagiques en vue de contribuer à leur conservation et à leur gestion rationnelle au niveau des pays voisins avec lesquels ces espèces sont partagées en l’occurrence la Gambie, la Mauritanie et le Maroc. Plus spécifiquement, l’étude vise à faire le point sur les aspects suivants :

- Historique des différents bateaux de recherches fréquentant la zone ;
- Effets des paramètres de l’environnement sur l’abondance de ces ressources ;
- Caractéristiques de la flottille de la pêche pélagique industrielle et artisanale ;
- Tendances de l’effort de pêche et des captures des petits pélagiques ;
- État d’exploitation des petits pélagiques ;
- Lacunes des connaissances sur la bioécologie des petits pélagiques.

2 Approche méthodologique

2.1 Revue documentaire sur les petits pélagiques

Cette première étape de l’étude consiste à rassembler les éléments bibliographiques disponibles sur les petits pélagiques. Ainsi, cette revue documentaire a permis de faire l’état des connaissances sur plusieurs aspects relatifs à la bioécologie et à l’exploitation des petits pélagiques. A cet effet, une exploitation de la littérature scientifique, des travaux d’expertise ainsi que des documents de projets a été effectuée. Ainsi, au cours de la revue documentaire l’accent a été particulièrement mis sur l’exploitation des articles et archives scientifiques, des documents techniques des groupes de travail du COPACE/FAO, des actes à communication, des études techniques ponctuelles et des documents académiques (mémoires et thèses de doctorat).

2.2 Opérations de collecte d’informations

2.2.1 Focus group avec les acteurs locaux

Les entretiens par focus group ont été effectués avec des groupes d’individus appelés à discuter en détail sur des sujets touchant la bioécologie et l’exploitation des petits pélagiques. Les discussions ont été animées par les chercheurs en présence des services administratifs représentés par les chefs des services départementaux et les agents techniques basés au niveau des postes de contrôle locaux. Ces entretiens ont permis de recueillir des connaissances empiriques très larges sur les petits pélagiques.
2.2.2 Exploitation de bases de données

Outre les focus group axés sur les connaissances empiriques des acteurs locaux, des données scientifiques ont été mises à contribution à travers la base de données CRODT. L’exploitation de cette base de données a fourni des informations quantitatives indispensables pour décrire les caractéristiques des unités de pêche ciblant les petits pélagiques. Ces données ont également permis d’analyser la dynamique des captures et des rendements de pêche en termes de captures par unité d’effort. La base de données a également servi à décrire la structure des tailles des principales espèces de petits pélagiques.

2.3 Procédure d’analyse des informations

2.3.1 Analyse qualitative des informations

En fonction des informations collectées et des objectifs de l’étude, deux types d’analyse complémentaires ont été effectuées. Il s’agit d’une analyse qualitative et d’une analyse quantitative. L’analyse qualitative concerne les informations recueillies lors des entretiens par focus group Il s’agit d’une analyse de contenu qui a permis de faire le point sur l’état des connaissances empiriques sur la bioécologie et l’exploitation des petits pélagiques. D’une manière générale l’analyse qualitative a abouti à l’identification des points de convergence et de divergence par rapport aux connaissances scientifiques.

2.3.2 Analyse quantitative des données

L’analyse quantitative a porté sur les données issues de l’exploitation des bases de données. Cette analyse est particulièrement axée sur l’exploitation des petits pélagiques à travers une description spatio-temporelle détaillée des différentes composantes des pêcheries De manière spécifique elle est relative :

– aux caractéristiques des unités de pêche ;
– à l’effort de pêche et aux captures ;
– aux rendements de pêche (cpue) ;
– à la structure des tailles débarquées ;
– aux indicateurs d’état des stocks.

3 Bioécologie des petites pélagiques de la Sous Région

3.1 Identification des principales espèces de petits pélagiques

Les principales espèces de petits pélagiques pêchées dans la région nord ouest africaine sont composées de clupéidés, de carangidés, d’un scombridé et d’un engraulidé (Ould Sidi, 2005 ; FAO, 2011). Les clupéidés sont constitués de la sardine ronde (Sardinella aurita), de la sardine (Sardina pilchardus) et de l’éthmalose
(Ethmalosa fimbriata). Les carangidés sont les chinchards noirs (Trachurus trachurus et Trachurus tereae) ainsi que le chinchard jaune (Caranx rhonchus). Le scombridé et l’engraulidé correspondent respectivement au maquereau (Scomber japonicus) et à l’anchois (Engraulis encrasicolus). La bioécologie de ces espèces a été décrite par plusieurs auteurs (Cury et Roy, 1987 ; Fréon, 1988, Binet., 1988 ; Garcia., 1982 ; Bakun et Parrish 1990 ; Ould Sidi, 2005 ; FAO, 2011 ; etc.). les éléments de ce chapitre résultent d’une synthèse des connaissances produites par ces différents auteurs.

3.2 Bioécologie des petits pélagiques

3.2.1 Bioécologie des sardinelles

La sardinelle ronde se rencontre sur l’ensemble du littoral africain, de la Méditerranée au Cap Frio (Angola, 18°S) On la trouve également en mer Noire et en adriatique et même à l’Est de la Péninsule Ibérique. Elle est aussi présente le long des côtes américaines de l’Atlantique entre le cap Cod aux U.S.A. et le Nord de l’Argentine, alimentant d’importants pêcheries au Venezuela et au Brésil. Elle vit dans des eaux non turbides du plateau continental de température inférieure à 24° C et préfère les eaux salées (35‰). Malgré une large répartition, cette espèce est abondante dans trois secteurs de l’Atlantique centre –est qui sont caractérisés par l’apparition saisonnière d’importantes remontées d’eaux froides à savoir :

- Du Cap Bojador (26° N) à la Guinée (10° N) ;
- Devant la Côte-D’ivoire et le Ghana dans le Golfe de Guinée ;
- Du sud du Gabon (0°) au sud de l’Angola (18°S).

Les zones intermédiaires sont beaucoup moins riches et pour certains auteurs le régime des courants n’est guère favorable aux échanges entre les zones. Dans le cas particulier de la zone nord ouest africaine, l’existence de deux stocks est souvent évoquée à savoir le stock sédentaire saharien (30° - 22° N) et le stock Sénégalo-mauritanien (environ 22° - 12° N).

La sardinelle ronde se reproduit au niveau du plateau continental, entre les isobathes 30 et 50 mètres. Le cycle sexuel de cette espèce dans la région sénégalo-mauritanienne présente les caractéristiques suivants :

- La ponte est étalée sur la totalité de l’année lorsque l’on considère l’ensemble de la zone, avec une période de reproduction maximale de mai à septembre ;
- La zone de ponte principale s’étend de la Gambie au cap Blanc. C’est ainsi que pour la période de ponte principale, le maximum se situe au niveau de la Gambie au début du mois de juin et arrive au Cap Blanc en septembre.

Les populations de Sardinella aurita du nord ouest africain se déplacent parallèlement aux côtes en recherchant les zones de convergences à proximité des upwellings. De façon générale, les adultes dispersés d’octobre à janvier au large de la Mauritanie, descendent
rapidement vers le sud en janvier-février et ne remontent vers le nord qu’à partir de mai à juillet (Fréon, 1988). Les jeunes, au terme de leur première année, se joignent à ce mouvement tout en se reproduisant pour la première fois (taille de 20 cm). Ces poissons atteignent la partie nord de la ZEE mauritanienne et séjournent entre le 20°N et le cap Barbas (22°N30’) jusqu’au mois d’octobre-novembre qui marquent le début de refroidissement des eaux et le début du mouvement inverse vers le sud. Les adultes de taille supérieure à 25 cm arrivent dans les eaux sénégalaises, repoussés par le refroidissement des eaux en décembre janvier. Ils se concentrent alors sur les accrocs entre la presqu’île du cap Vert et la Guinée-Bissau jusqu’au mois d’avril.

La sardinelle plate est aussi une espèce à affinité biogéographique tropicale. On la rencontre depuis la Méditerranée méridionale jusqu’en Angola. Cette espèce est présente du nord au sud de la ZEE mauritanienne. Elle a une distribution très côtière, occupant le plus souvent les fonds inférieurs à 50m. La sardinelle plate est abondante en saison chaude. Une nourricerie principale se trouve au nord du cap Timiris. Il n’a pas été mis en évidence des migrations de grandes amplitudes pour cette espèce. Les individus de grandes tailles (24 cm) sont faiblement représentés au Sénégal, alors qu’en Mauritanie la taille maximale est de 32 cm. La périodes de ponte principale à lieu entre mai et septembre.

3.2.2 Bioécologie des chinchards

Le chinchard noir européen (Trachurus trachurus) a une affinité tempérée. En Afrique, sa répartition va du détroit de Gibraltar au Sénégal. Elle occupe préférentiellement les secteurs les plus profonds du plateau continental (100 m et plus). De grands individus de 19-20 cm sont notés dans la zone sénégal-mauritanienne avec le refroidissement des eaux. En mai-juin, avec l’arrivée des eaux guinéennes, ils entament le mouvement inverse vers le nord. Les migrations côte-large sont prépondérantes. En saison chaude, les poissons sont centrés au large du plateau continental et en profondeur dans deux zones de concentration. En saison froide, ils sont plus près de la côte. La ponte s’effectue dans les eaux de température comprise entre 15 et 18° C. Lors de leur migration du nord vers le sud, les individus se reproduisent le long des côtes durant plusieurs mois. Le chinchard noir européen vit en bancs du fond le jour. Les individus se dispersent la nuit et remontent en surface lors de l’ascension du plancton dans les couches d’eau superficielles pour se nourrir. Chez les adultes, la consommation des larves et des juvéniles d’autres espèces de petits pélagiques peut devenir très importante.

Le chinchard noir africain (Trachurus trecae) est une espèce tropicale qui se rencontre dans tout l’Atlantique Est du Cap Bojador (26°N) au sud de l’Angola. Il est présent toute l’année dans toute la zone ouest africaine, mais les périodes les plus favorables aux grandes concentrations ont généralement lieu de mai à juillet et en octobre entre Saint Louis (16°N) et
Nouakchott (18°N). Il est rencontré à des profondeurs de 80-250 m dans la partie allant de 22°N à 18°N mais l’essentiel sa biomasse est concentrés sur des fondes des moins de 100 mètres. Les déplacements de cette espèce se font en fonction du mouvement du front intertropical. Au niveau de la zone sénégal-o-mauritanienne, un seul stock est signalé. Cette espèce migre du sud, où elle se concentre au sud du Cap Vert en hiver –printemps. Les juvéniles restent aux environs des nurseries. Cette espèce a une reproduction étalée sur toute l’année avec deux pics : le premier en mars-juin, le second en aout-octobre à une température comprise entre 18.5°C et 25.5°C. La principale zone de reproduction de *Trachurus trecae* se situe plus au sud, entre la presqu’île du Cap Vert (14°N) et le Cap Timiris (19°N). La ponte est étalée dans le temps avec un pic de février à juin qui se décale vers le nord avec le déplacement des adultes. Le chinchard noir africain a le même comportement et la même alimentation que le chinchard noir européen. Toutefois à partir de 24 cm il devient ichtyoplanktonophage. Son alimentation est surtout composée de crevettes, de juvéniles d’Engraulidés, de Myctophidés et de Carangidés.

Le chinchard jaune (*Caranx rhonchus*) est essentiellement tropical et ouest africain. Sa répartition est plus côtière, et plus au sud que les deux espèces de chinchards noirs. Son abondance augmente du Cap Timiris vers le sud. Cette espèce effectue aussi des migrations le long des côtes de la guinée en Mauritanie au rythme du balancement saisonnier du front intertropical. Elle est absente pendant tout le premier semestre de la zone nord. En saison chaude de jeunes individus sont présents sur les petits fonds au sud du cap Timiris. L’essentiel de la biomasse localisée sur des fondes de moins de 100 m avec une prédominance de poissons entre 18 et 36 cm. En début de saison froide (octobre-novembre), la biomasse est localisée principalement sur les fonds de 50 m au sud du cap Timiris. Au Sénégal, la période de reproduction est située entre avril et novembre et entre avril et août dans la zone mauritanienne au sud du cap Timiris. Le chinchard jaune a le même comportement que les autres chinchards, mais a un régime plus carnassier. Son alimentation est composée à 70% de poisson (anchois notamment), de calmars et de crevettes.

3.2.3 Bioécologie des autres espèces

La sardine est une espèce à affinité biogéographique tempérée chaude. Elle se répartit depuis la Mer du nord jusqu’aux cotés ouest africaines. Abondante au Maroc, elle semblait ne pas
s’étendre, au sud cap Bojador et l’on situait, jusque vers 1970, la limite méridionale de la pêcherie de sardine vers 26°N. Cependant, à partir de 1970, cette espèce se rencontre en qualités croissantes parfois même jusqu'au Sénégal. Trois stocks sont habituellement distingués au niveau de la sous région. Le stock A est situé entre 36°N et 33°30’N. Le stock B est localisé entre 32°30 et 27 N. Enfin le stock C, qui concerne la zone mauritanienne, se rencontre entre 26°Net 21°N. Ce dernier stock a subi une expansion d’abondance spectaculaire durant le début des années 70 pour devenir en quelques années la prise principale de cette zone. Cette expansion a été reliée au renforcement de l’upwelling qui a ensuite diminué à partir de 1976. Deux périodes de ponte ont été identifiées pour la sardine. Il s’agit d’une ponte principale en décembre et une ponte secondaire en mars.

Le maquereau (*Scomber japonicus*) est distribué à des profondeurs de 15-30 m à 350-40 0m. Le déplacement de cette espèce est aussi fonction du déplacement saisonnier des isothermes 19 à 20°C. La migration saisonnière du maquereau dans la zone sénégal-mauritanienne débute en avril. Les principales concentrations se forment au sud pour ensuite se déplacer vers le nord. En juin-septembre, elles sont plus importantes au nord. En octobre cette espèce commence à descendre rapidement vers le sud sous l’influence de refroidissement saisonnier des eaux. Cette espèce est rencontrée en abondance, à l’ouest du Banc d’Arguin principalement en mai et en octobre novembre. En effet, les plus grandes concentrations de cette espèce se rencontrent pendant les périodes de transitions. Les nourriceries les plus importantes se trouvent dans les eaux de la Guinée Bissau, de la Gambie, du Sénégal et du Sahara. Les euphausiacés constituent la nourriture de base de cette espèce, tandis que les petits organismes planctoniques (copépodes et cladocères) sont de moindre importance.

L’anchois (*Engraulis encrasicolus*) forme souvent de grands bancs. Cette espèce vit généralement dans des eaux peu profondes. Sur les cotes sénégal-mauritianniennes, l’anchois apparaît en période froide, notamment dans des eaux de températures comprises, entre 18 et 20°C. La principale zone d’abondance se trouve entre le Cap Timiris et le Cap Blanc. Il n’y a pas de migration de grande amplitude. Cependant des migrations vers le nord et vers le large ont été observées. La principale frayère de l’anchois est la zone située entre le cap Blanc et le cap Timiris. L’anchois est planctonophage. Son alimentation est composée essentiellement de copépodes et d’autres petits crustacés.

3.3 Caractéristiques l’environnement côtier sénégalais

3.3.1 Aspects géomorphologiques des côtes

Les côtes sénégalaises sont principalement orientées nord-sud. Avec une ouverture sur l’Océan Atlantique centre-est, le Sénégal bénéficie d’un littoral marqué par la presqu’île du Cap Vert qui forme l’extrémité occidentale du continent à la pointe des Almadies, avec des
îles (Gorée, Ngor), des îlots (les Madeleines) et une ample baie (Hann). Les côtes sénégalaises sont caractérisées par une grande diversité morphologique (CRODT, 2005). La presqu’île du Cap Vert les divise en trois grandes zones qui sont, du nord au sud :
- La Grande Côte qui est une zone dunaire avec un hinterland occupé par une frange côtière à forte activité agricole (les Niayes). Cette zone, fortement marquée par le delta du fleuve Sénégal, se prolonge vers le nord par la côte sud mauritanaise qui présente le même biotope. Dans cette zone, le littoral est principalement sableux avec un relief peu marqué, caractérisé essentiellement par des massifs dunaires.
- La presqu’île du Cap Vert, d’orientation est-ouest, est une zone à côte escarpée bordée de falaises, d’îles et de quelques plages sableuses.
- La Petite Côte et la Casamance forment une zone basse au sud, d’abord sableuse jusqu’à Joal, puis parsemée d’embouchures de fleuves (les fleuves Sine-Saloum, Gambie et Casamance et les rivières du sud) marquées par la mangrove.

Le plateau continental est limité par l’isobathe des 200 mètres (Domain, 1980). Sa superficie est de l’ordre de 28 700 km². De 27 milles nautiques au large de Saint-Louis, il se réduit à 5 milles au niveau de la presqu’île du Cap Vert. Au sud du Cap Vert, le plateau continental s’élargit progressivement pour atteindre 87 miles nautiques au niveau de la Casamance. Globalement le plateau continental sénégalais est peu accidenté, avec toutefois, quelques canyons sous-marins dont le plus important sur la côte nord est la fosse de Kayar. Il existe également deux falaises sous marines au sud de la presqu’île du Cap Vert à 45 et 70 mètres de profondeur. La pente du plateau est assez douce jusqu’à l’isobathe 60 mètres et s’accentue par la suite.

3.3.2 Hydrologie des côtes sénégalaises

3.3.2.1 Circulation horizontale des masses d’eaux

Au large du Sénégal, les eaux de surface sont sous l’influence de deux principaux courants océaniques aux caractéristiques très différentes (Domain, 1980).
- Venant du nord, le courant froid des Canaries dont une branche bifurque vers l’ouest au niveau du Cap Blanc pour former le courant nord équatorial, se déplace vers le sud tout le long de la côte de la Mauritanie et du Sénégal. Il s’agit d’un courant de dérive quasi permanent pendant toute la saison des alizés. Les eaux de surface subissant un entraînement mécanique sous l’influence du vent du nord. Il peut alors exister, surtout au sud du Cap Vert, un contre courant remontant le long de la côte.
- Venant de l’ouest, le contre courant équatorial chaud s’écoule vers l’est de la côte d’Afrique où il forme le courant de Guinée. En saison chaude, il peut cependant se diriger vers le nord. Ce courant est beaucoup plus variable que le précédent.
A côté des grands courants océaniques, il faut aussi noter que les côtes sénégalaises sont affectées par deux grands types de houles longues, issues des hautes latitudes des deux hémisphères (Niang-Diop et al., 2000).

- Les houles de nord-ouest (320°N à 20°E), issues de l'Atlantique nord, heurtent directement les plages de la côte nord alors qu’elles sont très atténuées sur la côte sud suite à des diffractions successives réalisées autour de la tête de la presqu’île du Cap Vert. Ces houles sont particulièrement fortes pendant la saison sèche.
- Les houles de sud-ouest (180°N à 230°E), issues de l'Atlantique sud, n’affectent que la côte sud de Dakar et ceci uniquement pendant l’hivernage (juillet à octobre).
- En outre, le littoral peut être exceptionnellement atteint par des houles d’ouest (260°N à 270°E), se produisant en général entre octobre et décembre et qui seraient engendrées par des cyclones dans la mer des Caraïbes.

3.3.2.2 Circulation verticale des masses d’eaux

Au mouvement horizontal des masses d’eaux du fait des courants océaniques et littoraux, s’ajoute une composante verticale associée principalement à une résurgence d’eaux profonde connue sous le nom d’upwelling. L’upwelling est un phénomène relativement complexe caractérisé par la remontée d’eaux profondes. Cette remontée se produit chaque fois que la force de Coriolis tend à écarter un courant côtier du littoral, c’est-à-dire si le courant se dirige vers l’équateur le long des rives orientales des océans, ou au contraire vers les pôles le long des rives occidentales. Le vent est l’un des principaux moteurs du phénomène d’upwelling (Figure 1). Le vent génère le phénomène d'upwelling en emmenant au large l'eau chaude (en surface) qui est alors remplacée par l'eau froide plus profonde.

![Figure 1 : Processus de génération de l’upwelling](image)

Selon Roy (1992), les côtes sénégalaises sont marquées par l’affluence saisonnière d’eaux froides issues d’upwellings côtiers (Figure 2). Le long des côtes sénégaloo-mauritianniennes, l’alizé contribue à repousser au large les eaux superficielles déjà fraîches et à permettre ainsi la remontée d’eaux profondes encore plus froides. Les remontées d’eaux froides profondes
riches en sels minéraux sont permanentes au dessus de 20° nord et saisonnières au sud de cette latitude (Figure 2). La manifestation des upwellings côtiers peut être repérée à travers les chutes de température de surface observées au niveau des stations côtières. De novembre à janvier, l’upwelling est dû au vent de direction nord-est et est légèrement plus intense sur la côte nord. En février, la dominante nord-ouest dans les alizés favorise la côte sud mieux exposée où l’upwelling devient plus intense. La saison d’upwelling s’étend jusqu’en juin sur la côte nord et juillet sur la côte sud mais son intensité est maximale entre mars et avril. Cette situation peut être perturbée par des chutes de l’intensité des alizés de nord-ouest remplacés par des vents d’harmattan fort avec un réchauffement local. Au Sénégal, on note que la majeure partie de la saison d’upwellings se produirait avec des vents supérieurs à 6,0 m/s (Roy, 1992). Les eaux froides issues d’upwelling se propagent du nord vers le sud (Laloë et Samba, 1990), envahissant la côte nord à la latitude de Saint-Louis (deuxième quinzaine d’octobre), puis celle de Kayar et Yoff (première quinzaine de novembre). L’épaisseur de ce courant superficiel oscille entre 20 et 50 mètres. L’intensité de l’upwelling est couramment mesurée par l’indice d’upwelling côtier (IUC) qui estime la quantité d’eau déplacée vers le large par le vent. Des valeurs élevées de cet indice sont notées jusqu’au mois de mai alors que la température commence à s’accroître dès le mois d’avril. Globalement, l’IUC reste supérieur à 1 m³.s⁻¹.m⁻¹ entre décembre à avril (Oudot et Roy, 1991).

Source : Roy (1992)

Figure 2 : Zones d’upwelling côtier en atlantique nord-est africain
La dynamique des masses d’eaux le long des côtes sénégalaises est responsable de la répartition saisonnière des eaux de surface. En prenant comme limites de température 24°C et de salinité 35g/l, elle permet de distinguer trois grandes catégories d’eaux (Domain, 1980 ; Laloë et Samba, 1990).

- Les eaux canariennes froides (température inférieure à 20°C) et salées (entre 35 et 36 g/l). Elles se mélangent avec les eaux profondes de l’upwelling côtier.

- Les eaux tropicales du contre-courant équatorial qui ont une température élevée (plus de 24°C) et des salinités fortes (environ 36 g/l). Leur épaisseur varie entre 30 et 50 mètres.

- Les eaux guinéennes qui sont chaudes (plus de 24°C) et dessalées (moins de 35 g/l). Ces eaux résultent du mélange des eaux tropicales avec les eaux de pluie de la mousson et surtout avec les apports fluviaux côtiers. Cette dessalure se remarque notamment dans le sud où les pluies sont plus importantes et au voisinage de l’embouchure des différents cours d’eau (fleuves Sénégal, Gambie, Casamance, etc.).

L’évolution des sels minéraux, en l’occurrence le nitrate et le phosphate, a été également mise en relation avec la saisonnalité de la température (Oudot et Roy, 1991). Il a été constaté que le cycle annuel moyen du nitrate est en opposition de phase avec celui de la température. Les plus fortes concentrations de nitrates (plus de 16 μmol/l) sont observées entre le mois de février et le mois de mars pendant la saison d’upwelling et les plus faibles (moins de 3 μmol/l) de juin à novembre dans les eaux chaudes. L’amplitude annuelle moyenne dépasse 13 μmol/l. Les concentrations du nitrate ne sont jamais nulles, les plus faibles valeurs restant voisines de 3 μmol/l pendant la saison chaude. Le cycle annuel moyen du phosphate est en tout point comparable à celui du nitrate, les plus fortes teneurs (plus de 1,2 μmol/l) sont observées en période d’upwelling et les plus faibles en saison chaude (moins de 0,5 μmol/l).

3.3.3 Particularités du milieu estuarien

Issu de la confluence de trois cours d’eau, le fleuve Sénégal, long de 1 800 km, parcourt un domaine sahélien dans une large vallée alluviale. L’estuaire du fleuve Sénégal s'étire sur une cinquantaine de kilomètres entre l'embouchure et le barrage anti-sel de Diama. A l'embouchure, l'estuaire se présente comme un chenal rectiligne, bordé en rive droite par le cordon dunaire que constitue la langue de Barbarie et en rive gauche par un réseau assez

1 Une mole d’atomes contient environ 6,022*10^{23} atomes
diffus de lagunes (mangrove fossile). Le régime du fleuve Sénégal, de type tropical, se caractérise par un cycle annuel comportant :

- une période de hautes eaux de 3 à 4 mois, avec une pointe de crue en octobre ;
- une période de basses eaux étalée sur 8 à 9 mois, progressivement décroissante de novembre-décembre à juin-juillet avec une remontée saline lors de la décrue.

Le fleuve Saloum, long de 250 km, définit un bassin d’une superficie de 29 700 km² (Diouf, 1996) avec une faible pente (moins de 0,6%). Il est localisé à une centaine de kilomètres au sud de Dakar, soit au centre ouest du Sénégal, vers la frontière nord gambienne. L’estuaire hyper halin du Saloum (entre 40g/l et 70g/l de l’aval vers l’amont) se caractérise par un fonctionnement d’estuaire inverse. À l’inverse du fleuve Sénégal, le Saloum présente la particularité d’une absence totale d’apport fluvial pendant une bonne partie de l’année, ce qui entraîne une forte salinisation de ses eaux, même après la saison des pluies. C’est un milieu marqué par la présence de nombreuses vasières, des chenaux ou bolons bordés de mangrove et des îles et îlots inhabités qui abritent une riche faune sauvage.

Le fleuve Casamance traverse toute la région de Casamance d’est en ouest sur près de 350 km. Il prend sa source aux environs de Fafakourou et présente des pentes longitudinales extrêmement faibles, pratiquement nulles, sur plus de 200 km à l’intérieur des terres. Le calendrier de crue dépend des précipitations. Cependant, sur son bassin, le seul apport non négligeable en eau douce se localise aux environs de la frontière avec la Guinée. De l’embouchure aux sources, on passe d’un milieu marin à un milieu hyper halin.

4 Effet de l’environnement sur les petits pélagiques

4.1 Notion de facteur écologique et loi de tolérance

L’influence des facteurs écologiques sur la biocénose peut être appréhendée à travers une loi dénommée « loi de tolérance » (Figure 3) qui stipule que pour chaque facteur existe un domaine de concentration (intervalle de tolérance) dans lequel tout phénomène physiologique impliquant cet élément peut s’effectuer convenablement (Ramade, 1981). En conséquence, c’est seulement dans cet intervalle que la vie de telle ou telle espèce végétale ou animale est possible. Il existe à l’intérieur de ce domaine de concentration une valeur optimale, dénommée preferendum, pour laquelle les réactions métaboliques s’effectuent à une vitesse maximale. En deçà de la borne inférieure de l’intervalle de tolérance, survient la mort par carence de l’élément considéré et au-delà de la borne supérieure, la mort par excès. Par exemple, dans le cas particulier de la température, il existe pour chaque espèce une température létale inférieure (mort par le froid), une température létale supérieure (mort par la chaleur) et une température optimale préférentielle (preferendum thermique). L’importance du preferendum thermique est grande car elle explique très souvent les particularités de la
répartition des animaux dans leurs biotopes ainsi que leurs déplacements. Si l’on tient compte de la totalité des éléments nécessaires au développement d’une espèce donnée, il est possible de définir la niche écologique de l’espèce considérée, en représentant de façon multidimensionnelle les intervalles de tolérance respectifs de ces tous éléments.

En référence à la loi de tolérance, la répartition spatio-temporelle de chaque espèce est fonction de sa valence écologique. Cette notion correspond à la possibilité qu’a cette espèce de peupler des milieux différents caractérisés par des variations plus ou moins grandes de facteurs écologiques (Dajoz, 1978). Une espèce à faible valence écologique ne pourra supporter que des variations limitées des facteurs écologiques : on la dira stenoèce. Une espèce capable de peupler des milieux très différents ou très variables sera appelée euryèce. Si ces notions sont appliquées à des facteurs écologiques comme la température, la salinité, l’alimentation par exemple, on aura des espèces qualifiées de sténothermes/eurythermes, sténohalines/euryhalines, sténophages/euryphages.

Figure 3 : Représentation schématique de la loi de tolérance

4.2 Généralité sur les effets des facteurs physico-chimiques

4.2.1 L’effet de la température

En fonction de l’affinité thermique ainsi que de l’influence de la température sur le métabolisme, il existe une grande hétérogénéité dans la répartition spatio-temporelle des
espèces aquatiques. On distingue à cet effet des espèces d’eaux froides des hautes latitudes et des espèces tropicales d’eaux chaudes. Par ailleurs, dans une même zone, il existe une différence entre les espèces eurythermes (capables de supporter de fortes variabilités de température) et les espèces sténothermes (très sensibles aux écarts de températures) et qui sont souvent obligés de faire des migrations saisonnières. Par ailleurs, les processus d’alimentation, de reproduction et de croissance ((Figure 4) sont fortement liés à la température qui contribue en outre au développement de la production primaire et son transfert vers les maillons supérieurs de la chaîne alimentaire (Koutitonsky., 2005).

4.2.2 L’effet de la salinité

La salinité joue un rôle important dans la répartition des êtres vivants. Ainsi, beaucoup de groupes d’espèces sont exclusivement ou presque exclusivement marins alors que d’autres qui sont capables de supporter des niveaux de salinité élevés vivent le plus souvent dans les eaux saumâtres. En rapport avec la résistance à la variabilité de la salinité, Dajoz (1978) note que lorsque celle-ci descend au-dessous de 30 g/l dans les estuaires, la faune marine sténohaline s’appauvrit. Une très grande forte salinité peut se traduire par des migrations définitives, saisonnières ou, pire encore, par la mort des espèces non tolérantes.

4.2.3 L’effet des autres facteurs physico-chimiques

En dehors de la température et de la salinité, plusieurs autres facteurs physico-chimiques influencent les conditions d’existence des espèces dans leur environnement.

− La turbidité intervient essentiellement en réduisant l’intensité lumineuse et par conséquent en diminuant la productivité des végétaux autotrophes. En même temps, elle élimine les organismes ayant besoin d’un fort éclairement. Elle influence également la densité de l’eau qui détermine le niveau de flottaison de la plupart des microorganismes (en particulier le plancton). Par ailleurs, la teneur en oxygène est généralement en relation inverse de la turbidité. Dajoz (1978) estime que lorsque l’eau contient plus de 4% (en volume) de particules solides en suspension les effets de ces dernières commencent à se faire sentir fortement. La turbidité de l’eau peut cependant avoir, pour certaines espèces, un rôle protecteur contre les prédateurs. Toutefois, malgré les adaptations, la mort survient lorsque la quantité d’éléments en suspension est trop grande.

− Parmi les gaz dissous, l’oxygène et le gaz carbonique sont les plus importants écologiquement (Dajoz, 1978). Alors qu’en milieu terrestre l’oxygène n’est pas un facteur limitant, sauf dans des cas très rares, il l’est fréquemment dans le milieu aquatique. La teneur en oxygène chute en fonction de la profondeur. Les milieux marins sont relativement pauvres en oxygène, sauf dans des cas tels que ceux des eaux calmes très riches en végétaux chlorophylliens. La résistance des animaux aquatiques aux faibles teneurs en oxygène est très variable suivant les espèces. L’adaptation aux faibles teneurs en
oxygène se traduit sur le plan biochimique par une modification des propriétés de l’hémoglobine.

- Le gaz carbonique est 35 fois plus soluble dans l’eau que l’oxygène (Dajoz, 1978). L’eau de mer constitue donc un réservoir de gaz carbonique puisqu’elle renferme 40 à 50 cm³ de ce gaz par litre soit 150 fois la concentration de l’atmosphère. Le gaz carbonique joue un rôle considérable en permettant la photosynthèse des végétaux chlorophylliens, en agissant sur le pH de l’eau et sur sa réserve alcaline (cas de l’eau de mer surtout). Il intervient aussi dans l’édification des formations calcaires (coquilles, squelettes, carapaces) de nombreux invertébrés.

- L’azote et le phosphore sont deux éléments indispensables à la synthèse de la matière vivante et qui jouent de ce fait le rôle de facteurs limitants dans la photosynthèse quand ils sont présents en quantités insuffisantes (Dajoz, 1978). Les quantités de phosphore et d’azote disponibles sous la forme assimilable de phosphates et de nitrates sont faibles en surface dans la zone photosynthétique. Les nitrates et les phosphates tendent à s’accumuler en profondeur où ils se forment à la suite de la décomposition bactérienne des cadavres d’ani maux et végétaux.

- Le niveau d’acidité/basicité intervient aussi dans la répartition des organismes aquatiques. Les poissons, dans leur ensemble, supportent des pH compris entre 5 et 9 (Dajoz, 1978). Pour des pH inférieurs à 5, il faut s’attendre à des mortalités massives bien que certaines espèces puissent s’adapter jusqu’à des pH de 3,7. Les pH supérieurs à 10 sont mortels pour tous les poissons. La productivité est maximale pour des niveaux d’acidité/basicité compris entre pH 6,5 et pH 8,5.

- La dynamique des masses d’eaux est également très déterminante. Elle agit sur la quasi-totalité des autres paramètres physico-chimiques notamment dans la régulation thermique et la modification des concentrations en sels minéraux. Elle sert également de support au déplacement de la plupart des espèces (des micro-organismes aux grandes espèces migratrices).
4.3 Particularité du phénomène d’upwelling

Le phénomène d’upwelling est un exemple assez remarquable qui permet de mettre en exergue les relations entre les espèces et leur environnement. A travers le brassage des eaux, il permet de réduire l’hétérogénéité des niveaux de température entre le fond et la surface. En outre, dans les zones de remontées d’eaux profondes la richesse en éléments nutritifs des eaux superficielles permet une plus grande productivité primaire, donc une plus grande abondance de la faune. Au niveau des côtes sénégalaises, Roy (1992) estime que l’upwelling est la principale source d’enrichissement des eaux (0,7 millions de tonnes de phosphore par an et par kilomètre de côte). En outre, en période d’upwelling fort, les teneurs en phosphate sont plus élevées sur la côte sud où l’intensité de l’upwelling est plus forte. Cette période entraîne également une forte augmentation (en moyenne dix fois plus) des concentrations en nitrates.

Le principe de la « fenêtre environnementale » (Figure 5) a été largement illustré à travers l’influence de l’upwelling sur certains organismes marins. Dans le cas de la production primaire, bien qu’une très forte intensité de l’upwelling se traduise par l’enrichissement du milieu en sels minéraux, elle constitue une contrainte au développement optimal du phytoplancton à la côte (Oudot et Roy, 1991). Tout en impactant sur le zooplancton, l’upwelling agit également dans le développement des maillons supérieurs de la chaîne alimentaire. Dans le cas particulier des petits pélagiques (Roy, 1992), le succès du recrutement dépend de l’intensité de l’upwelling :

− dans le cas d’upwelling faible, le brassage par le vent ne dépasse pas une certaine limite et l’accroissement de la production primaire et secondaire qui en résulte permet d’accroître la survie larvaire ;
− dans le cas d’upwelling fort, le brassage par le vent conduit à une désagrégation des essaims de nourriture et de larves, limitant ainsi la survie des larves ;
− il existe une valeur optimale du vent pour laquelle les effets de l’upwelling sont plus favorables au succès du recrutement.
5 Systèmes de suivi de l’exploitation des petits pélagiques

5.1 Suivi de la pêche artisanale

5.1.1 Le recensement des unités de pêche

En l’absence de contrainte particulière, généralement d’ordre financier, le CRODT effectue un recensement deux fois par an (saison froide et saison chaude). La zone couverte s’étend le plus souvent de Saint Louis à Djifère. Il couvre exceptionnellement tout le littoral du Sénégal en cas de besoin exprimé par le Ministère chargé de la pêche qui apporte ainsi la dotation financière nécessaire. C’est par exemple le cas en 1997 et plus récemment en 2005, année à laquelle le recensement a été couplé avec une importante enquête sur les paramètres socioéconomiques des pêcheurs et propriétaires de pirogues. Les informations collectées ont trait, entre autres, aux centres d’attache et d’origine de la pirogue, à l’équipage, à la puissance du moteur, aux engins utilisés, etc.

5.1.2 Les enquêtes sur les activités de pêche

Les enquêtes sur les activités de pêche portent sur l’effort de pêche, les captures et les tailles des principales espèces débarquées. Ces enquêtes sont régulièrement effectuées au niveau des huit principaux centres de débarquement que sont Saint Louis, Kayar, Yoff, Ouakam, Soumbédioune, Hann, Mbour et Joal. De manière exceptionnelle, des enquêtes sont ponctuellement effectuées dans quelques centres du Saloum et de la Casamance à travers des projets. L’effort est collecté par des aides de plage qui s’informent quotidiennement sur le nombre de sorties en mer selon l’engin de pêche. Pour les captures, la méthodologie est basée...
sur une stratification croisée à trois niveaux (centre - quinzaine - engin de pêche) dont le but est de mieux prendre en compte les fluctuations spatio-temporelles et les spécificités de chaque type de pêche. Pour chaque unité de pêche échantillonnée, l’enquêteur relève une grande diversité d’informations telles que la zone de pêche, l’engin de pêche, la durée de pêche, la profondeur de pêche, les espèces capturées, les quantités débarquées et les tailles des individus capturés.

5.1.3 Le traitement des données

Le traitement des données d’enquête s’inscrit principalement dans le cadre d’une procédure de calcul aboutissant à l’estimation de l’effort et des captures au niveau de chaque centre d’enquête et de la région maritime (Figure 6). Dans un premier temps, pour chaque centre et pour chaque engin de pêche, l’effort de pêche est cumulé puis agrégé par quinzaine en tenant compte du nombre de jours sans collecte d’effort dans la quinzaine. Pour les captures, les données issues de l’enquête permettent d’abord d’estimer les captures par unité d’effort (cpue en kg par sortie) par quinzaine et par engin. Ensuite, la combinaison des cpue avec l’effort agrégé aboutit à la détermination des captures extrapolées par centre. Enfin, l’utilisation des coefficients d’extrapolation régionaux en fonction de la saison et des groupes d’engins permettent l’estimation des statistiques de pêche (effort et captures) au niveau régional et national. Toutes ces données brutes et traitées sont stockées dans les serveurs de base de données du CRODT à travers des applications spécialisées. Le schéma ci-dessous (Thiao, 2009) résume le processus de collecte et de traitement en pêche artisanales au sein du CRODT.
5.2 Enquêtes au débarquement de la pêche industrielle

En ce qui concerne la pêche industrielle côtière, trois catégories peuvent être distinguées à savoir la pêche pélagique côtière (pêche sardinière), la pêche pélagique hauturière (pêche thonière) et la pêche démersale côtière (pêche chalutière côtière). En ce qui concerne plus spécifiquement les petits pélagiques, l'exploitation industrielle est essentiellement effectuée par la pêche pélagique côtière à travers les bateaux sardiniers basés au Port de Dakar. Cependant, dans le passé des senneurs et chalutiers étrangers (notamment les russes) ont opéré dans la ZEE sénégalaise. Les informations habituellement collectées sont relatives aux marées (effort en jours de mer, position géographique, temps de pêche, zone de pêche, nombre de coups de filets, etc.) et aux captures (débarquements et rejets par espèce). L’essentiel des informations sur la pêche pélagique est obtenu à travers les rapports de marée recueillis et transmis au CRODT par la Direction de la Pêche Maritime. Ces informations sont collectées de façon exhaustive par un enquêteur du CRODT basé en permanence au Port. Les données sont ensuite codifiées puis acheminées au Centre de Calcul du CRODT pour saisie et traitement à travers des applications spécialisées.
5.3 Description des procédures d’évaluation des stocks

5.3.1 Evaluation directe par campagnes acoustiques

Les campagnes acoustiques sont basées sur les techniques d'écho-intégration. Cette méthode d'évaluation de la biomasse s'appuie en effet sur le principe que l'écho des poissons qui se trouvent dans un volume d'eau est proportionnel à leur densité. Outre son indépendance vis à vis des évaluations faites à partir des données pêche, cette méthode apporte des informations précieuses notamment sur la répartition géographique des espèces, les migrations, le comportement et la taille des stocks en vue de la régulation des pêcheries. Depuis plusieurs années, de nombreuses campagnes d'écho-intégration ont couvert tout ou partie du plateau continental sénégalais. Ces travaux ont été réalisés aussi bien par des navires de recherches aussi bien étrangers que nationaux (Samb, 1994).

De mars 1970, époque à laquelle remontent les premières données d'écho-prospection à octobre 1982, les campagnes acoustiques ont été l’œuvre de navires d’origine étrangère. Ces campagnes couvrent la zone d'extension géographique des stocks de petits pélagiques côtiers intéressant la Mauritanie et le Sénégal. Plus précisément, dans la zone sénégalaise, quinze campagnes d’écho-intégration ont été effectuées de 1973 à février 1982 dont onze par le CAPRICORNE et trois par le Dr. Fridtjof NANSEN. Durant cette période, le Cornide de SAAVEDRA quant à lui à couvert en Août 1980 la zone sud Gambie-Cap Roxo. Il faut noter que parmi toutes ces campagnes, dix campagnes se sont déroulées en saison froide et cinq en saison chaude. Toutes ces campagnes ont été effectuées avec un matériel, identique (sondeur SIMRAD EK 120, EK 38, et un intégrateur analogique QM). Des intercalibrations ont été effectuées entre le CAPRICORNE et le Dr. Fridtjof NANSEN en 1981 et 1982 dans la zone Sud Gambie. D'autre part un inter-étalonnage entre les équipements des deux navires a été effectué à partir d'une sphère standard au cours de ces mêmes campagnes.

A partir de 1982, le CRODT s'est doté d'un ensemble d'écho-intégration BIOSONICS (120 KHz). La première campagne effectuée par le CRODT (Echosar 5) fut réalisée en coopération avec le navire français CAPRICORNE. Par la suite, ces campagnes Echosar se sont poursuivies à bord du navire Laurent AMARO jusqu'en 1985. Le navire Louis SAUGER a ensuite succédé le Laurent AMARO pour l'exécution des campagnes acoustiques. En 1986, une campagne commune dénommée "Cooperative Survey" a réuni les navires Dr. Fridtjof NANSEN (Norvège), Cornide de SAAVEDRA (Espagne), NDiago (Mauritanie) et Louis SAUGER (Sénégal) pour une intercalibration et des travaux de prospection sur l'ensemble de la région. De même, dans le cadre du projet GLO/82/001 relatif à la prospection des ressources halieutiques mondiales, la FAO a organisé en accord avec le Maroc, la Mauritanie, le Sénégal, la Gambie et la Guinée Bissau, une campagne d'évaluation acoustique sur les plateaux continentaux de ces différents pays.
Au Sénégal, le navire Louis SAUGER qui a assuré les campagnes acoustiques jusqu’en 19xx a été plus tard relayé par l’actuel navire Itaf DEME. Ce navire de recherche est un don octroyé par la coopération japonaise (JICA) septembre 2000. D’une longueur de 32,70 mètres et d’un tonnage brut de 318 tonnes, le navire Itaf DEME possède tous les équipements modernes pour la réalisation des campagnes océanographiques et halieutiques, notamment des campagnes de prospection acoustique par écho-intégration.

5.3.2 Evaluation indirecte par les statistiques de pêche

L’état des stocks est apprécié à travers des points de référence biologiques qui permettent de formuler des recommandations d’aménagement. A cet effet, plusieurs indicateurs sont habituellement calculés :

- **Beur/B0.1**: Rapport entre la biomasse estimée pour la dernière année et la biomasse correspondante à F0.1.
- **Beur/BMSY**: Rapport entre la biomasse estimée pour la dernière année et la biomasse correspondante à FMSY.
- **Fcur/FSYcur**: Rapport entre le coefficient de mortalité par pêche effectivement observé la dernière année de la série et le coefficient qui donnerait une capture durable au niveau de biomasse actuelle.
- **Fcur/FMSY**: Rapport entre le coefficient de mortalité par pêche effectivement observé la dernière année de la série et le coefficient qui donnerait une capture durable maximale à long terme.
- **Fcur/F0.1**: Rapport entre le coefficient de mortalité par pêche effectivement observé la dernière année de la série et F0.1.

Les indices B/BMSY et F/FMSY sont utilisés comme points de référence limites alors que les indices B/B0.1 et F/F0.1 servent de points de référence cibles. En plus de l’estimation des
paramètres décrivant l’état des stocks, l’évaluation indirecte permet également de faire des projections à moyen terme. Étant donné la nature variable des stocks de petits pélagiques, il a été décidé de ne pas dépasser cinq années de projection. Toutes les projections ont comme point de départ l’état estimé du stock aux dernières données disponibles. A partir de là des scénarios sont simulés selon les changements dans la mortalité par pêche et/ou les captures par rapport aux estimations de la dernière année de données disponibles. Pour chaque stock, deux scénarios sont généralement appliqué. Le premier est relatif le statuquo qui considère les rendements futurs et le développement du stock au cas où la mortalité par pêche demeure au niveau actuel. Le deuxième scénario prend en compte une réduction ou une augmentation de l’effort de pêche selon l’espèce analysée.

6 Dynamique des pêcheries et état d’exploitation des stocks

6.1 Effort de pêche des flottilles ciblant les petits pélagiques

6.1.1 Effort de la flottille de pêche artisanale

Les petits pélagiques sont essentiellement exploités à travers deux engins de la pêche artisanale. Il s’agit de la sennet tournante et du filet maillant encerclant. La sennet tournante est l’engin de pêche artisanale le plus élaboré et le plus proche des engins de pêche industrielle. Elle mesure entre 250 et 300 mètres pour une chute de 40 mètres. La pêche se pratique habituellement avec deux pirogues. La plus petite, 12 à 15 mètres, porte le filet. Elle permet d’encercler le banc de poissons en le doublant dans la direction où il se déplace. La manipulation de la coulisse permet de fermer le filet en forme de poche dans la partie inférieure. Le poisson est alors écopé à l’aide de grandes épuisettes par les nombreux pêcheurs à bord de la deuxième pirogue qui est plus grande (jusqu’à 20 mètres) et peut embarquer entre 10 et 20 tonnes de poisson. Elle est communément appelée pirogue porteuse. Le filet maillant encerclant est constitué de nappes de filets flottantes de longueur variant entre 250 et 450 mètres pour une chute de 10 à 12 mètres. Les pêcheurs encerclent le banc de poissons repéré à la surface de l’eau (les Clupéidés en général). Les poissons se maillent dans les filets en tentant d’échapper au resserrement du cercle. Le filet est ensuite halé dans la pirogue et les poissons sont démaillés un à un.

En se référant aux recensements de 1997 et de 2005 (saison chaude) qui avaient couvert toute la zone côtière sénégalaise y compris les estuaires du Sine-Saloum et de la Casamance, on peut constater que la variation du nombre d’unités de pêche au filet maillant encerclant a été plus importante que celle des sennes tournantes (Figure 7). En effet, durant cette période de 8 ans, le nombre de filets maillants encerclants a plus que doublé en passant de 218 à 540 unités. En ce qui concerne les sennes tournantes, la hausse n’est que de 30,7% durant cette période. En outre, en comparant ces deux recensements à couverture intégrale par rapport aux
autres qui ne couvrent que la zone de Saint-Louis à Djifère, on note une forte disparité selon les deux engins de pêche. En effet, alors que le nombre de sennes tournantes ne varie presque pas, une très grande différence est constatée au niveau des filets maillants. Cette situation reflète le fait que les unités à senne tournante sont essentiellement concentrées dans la zone de Saint-Louis à Djifère alors que les filets maillants encerclants qui ciblent intensément l’ethmalose opèrent surtout dans les estuaires notamment au Sine-Saloum. La couverture partielle des recensements tend donc à minimiser très fortement l’importance et donc l’effort de pêche potentiel de la flottille de filets maillants encerclants.

![Figure 7 : Nombre d’unités de pêche artisanale selon l’engin de pêche](image)

Globalement au cours de ces trente dernières années l’effort de pêche effectif des sennes tournantes a connu une évolution en deux phases (Figure 8). En effet, celui-ci a d’abord très fortement augmenté entre 1981 et 1993 en passant de 27 441 à 62 470 sorties, soit plus d’un doublement en 13 ans. Suite à cette période l’effort de pêche des sennes tournantes devient relativement stables autour de 60 000 sorties avec cependant quelques fluctuations assez marquantes. En outre, on peut également noter qu’au cours des dernières années (depuis 2004) l’effort de pêche des sennes tournantes tend globalement à la baisse. Cette baisse est cependant à mettre en relation avec l’octroi de licences (environ 300 licences par an) par le gouvernement mauritanien qui a comme conséquence de transférer une bonne partie de l’activité des sennes tournantes basées notamment à Saint Louis.

En ce qui concerne l’effort des filets maillants encerclants, une variation significative n’a été notée qu’entre 1981 et 1985. Durant ces cinq années, l’effort des filets maillants a plus que triplé en passant de 7 594 à 24 995 sorties. Durant tout le reste de la période, excepté la
suractivité exceptionnelle de 1996-1997, l’effort de pêche est resté stable légère au dessus de 20 000 sorties par an. Il faut cependant signaler ici que cet effort concerne les unités basées dans la zone de couverture du système d’enquête du CRODT, et notamment les filets maillants encerclants opérant au niveau de la Petite Côte en particulier entre Mbour et Joal. Une couverture du Sine Saloum aurait certainement donné un niveau d’effort beaucoup plus important et dynamique.

Figure 8 : Effort de pêche artisanale selon l’engin de pêche

6.1.2 Effort de la flottille de pêche industrielle

La pêche sardinière a été considérée par le gouvernement du Sénégal comme un prolongement de la pêche artisanale. De ce fait, les pêcheries d’espèces pélagiques côtières (sardinelles notamment) par un armement « amélioré » ou « semi-industriel » ont été le domaine privilégié d’expérimentation pour moderniser la pêche artisanale. Ainsi, la pêche pélagique côtière n’attire pas les industriels. Au début des années 60 un seul sardinier de type industriel a opéré à côté d’embarcations subventionnées dans le cadre du programme financé par le Fonds d’Aide et de Coopération pour la modernisation de la pêche artisanale. La flottille industrielle sardinière s’est alors réduite à ce seul navire jusqu’en 1967. Cette pêcherie est en fait confrontée à la concurrence de la pêche artisanale qui fournit des prises importantes à bas prix (Lourdelet, 1966 ; Chauveau, 1989). Néanmoins, les politiques de développement de cette pêcherie ont fini par mettre en place un armement qui dépasse une dizaine de bateaux au début des années 80.

Au cours des trente dernières années, l’évolution de la flottille industrielle sardinière a été marquée par trois grandes phases (Figure 9). Au cours de la première moitié des années 80 la flottille a caractérisée par une diminution très rapide. Elle passe alors de 19 bateaux en 1982
pour se stabiliser plus tard à seulement 5 bateaux à la fin des années 80. Ensuite, au début des années 90, l’entrée de quelques bateaux dans la pêcherie entraîne une expansion significative de la flottille industrielle pélagique jusqu’à un niveau record de 29 bateaux en 1992. En fait ces nouveaux bateaux sont constitués de chalutiers pélagiques russes dont certains ont opéré jusqu’en 1996. Avec le départ des bateaux russes, le nombre de sardiniers actifs n’a plus dépassé 6 bateaux par an. On note même une baisse au cours des dernières années avec actuellement une stabilisation à trois bateaux par an.

Figure 9 : Nombre de bateaux sardiniers opérationnels

6.2 Evolution des débarquements de petits pélagiques

6.2.1 Composition spécifique des débarquements de la pêche artisanale

En termes de volume de débarquements (Figure 10), les petits pélagiques constituent de loin la principale composante de la pêche artisanale sénégalaise (en moyenne 224 000 tonnes par an soit 76,7% sur la période 1981-2010). Bien que certaines espèces de petits pélagiques (ethmalose et chinchard jaune notamment) ne soit pas négligeable, l’exploitation des petits pélagiques est fortement marquée par la prédominance de la sardine ronde et de la sardinelle plate (respectivement en moyenne 52,2% et 36,8% des débarquements de petits pélagiques). On peut signaler les incursions spontanées de la sardine dans les débarquements entre 2002 et 2007. En outre, alors que les quantités relatives aux petits pélagiques sont globalement marquées par une très forte hausse au cours des trois dernières décennies, celles des autres espèces (espèces démersales notamment) sont restées presque stables. Ainsi, au cours de ces cinq dernières les débarquements de petits pélagiques dépassent même parfois 80% des débarquements totales de la pêche artisanale. Dans la suite de l’analyse des débarquements, une description détaillée des trois principales espèces permet de mieux cerner
6.2.2 Dynamique spatiale des débarquements de la pêche artisanale

Bien que Mbou et Joal soient prédominants jusqu’au début des années 2000, les débarquements de sardinelle ronde sont relativement importants dans la plupart des huit centres de pêche régulièrement échantillonnés (Figure 11). Il n’y a qu’à Soumbédioune et Ouakam habituellement caractérisés par des pêcheries démersales où les débarquements de sardinelle ronde sont assez négligeables. En termes d’évolution spatio-temporelle, trois phases peuvent être globalement notées. Du début des années 80 à la fin de la première moitié des années 90 on note un développement rapide de la pêcherie dans tous les centres de pêche. Ce développement est caractérisé par une forte croissance des débarquements plus marquée sur la Petite Côte surtout à Mbou où le record historique d’environ 77 500 tonnes de sardinelle ronde a été atteint en 1992. A partir de la deuxième moitié des années 90 les débarquements de sardinelle ronde ont connu une tendance générale à la baisse qui s’est poursuivie jusqu’au début des années 2000. Il n’y a qu’à Kayar où la tendance est globalement en hausse continue durant les trois décennies. A Mbou on peut même parler d’effondrement car à partir de 1992 ont fortement baissé pour atteindre seulement 13 626 tonnes en 1999, soit une chute de 82,4% en 6 ans. A Joal, la baisse des débarquements a démarré plus tardivement à partir de 1997 avec cependant des fluctuations assez marquées. La troisième phase de l’évolution des débarquements de sardinelle ronde s’est intervenu à partir de 2002-2003. En effet, à partir de cet instant, on note amélioration sensible des volumes débarqués. Cette amélioration plutôt
légère dans la plupart des centres de pêche est par contre très spectaculaire au niveau de Saint Louis où les débarquements ont évolué soudainement vers des records (jusqu’à 111 343 tonnes en 2008). Cette situation qui a fini par placer les débarquements à Saint Louis au dessus de ceux des centres de la Petite Côte (Mbour et Joal) s’explique par les licences de pêche octroyées par le gouvernement mauritanien qui ont permis d’accéder à des zones de pêche où le stock de sardinelle ronde est en meilleur état par rapport au côtes sénégalaises. Toutefois, au cours des deux dernières années 2009-2010, les débarquements de sardinelle se réorientent à la baisse dans la presque totalité des centres de pêche.

![Figure 11 : Débarquements de sardinelle ronde selon le centre de pêche](image)

La répartition spatio-temporelle des débarquements de sardinelle plate montre d’abord une prédominance du centre de Joal et dans une moindre mesure de Mbour (Figure 12). Durant une bonne partie de la période 1981-2010, les débarquements effectués dans ces deux centres et surtout à Joal ont connu une tendance marquée par une forte hausse. A Joal, avec un record historique de 109 717 tonnes en 2003, le volume des débarquements a été multiplié par 14 par rapport à son niveau de 1981. Toutefois, à partir de l’année 2004, la tendance des débarquements de sardinelle plate est entrée dans une phase de décroissance très marquée aussi bien à Joal qu’à Mbour. Ainsi, à Joal, le volume débarqué n’est que de 51 950 tonnes en 2010, soit une chute de 52,7% par rapport au record de 2003. Durant cette même période, la baisse des débarquements de sardinelle plate est de 66,2% alors que dans les autres centres comme Saint Louis et Kayar enregistre plutôt une légère amélioration.
L’examen de la répartition spatiale des débarquements d’ethmalose montre que parmi les huit centres couverts par les enquêtes, Joal constitue le fief de cette pêcherie (Figure 13). Dans les autres centres, les volumes débarqués sont très faibles voire négligeables. Au cours des deux premières décennies 1981-2001, les débarquements d’ethmalose à Joal sont marqués par une tendance générale à la hausse ponctuée cependant de quelques fluctuations parfois très marquées. C’est notamment le cas des courtes périodes de baisses notées entre 1983 et 1985 et entre 1990 et 1994 mais également les pic de 1999 (19 769 tonnes) et de 2001 avec un niveau maximal de 23 617 tonnes. Toutefois, d’une manière générale on retient durant les deux décennies 1981-2001, le volume des débarquements d’ethmalose à Joal a été multiplié par 14. Par contre au cours de cette dernière décennie, la série des débarquements est nettement caractérisée par une tendance globalement décroissante qui a ramené leur niveau aux environs de 5 000 tonnes.
6.2.3 Composition spécifique des débarquements de la pêche industrielle

Les débarquements de la pêche sardinière connaissent également une tendance semblable à celle du nombre de bateaux. D’une manière générale, la composition par espèce des débarquements est caractérisée par une très faible hétérogénéité (Figure 14). Les deux espèces de sardinelles (sardinelle ronde et sardinelle plate) sont prédominantes et peuvent représenter jusqu’à 95% des débarquements. Les débarquements de chinchard jaune sont certes relativement moins importants mais ne sont pas négligeables (jusqu’à 3 676 tonnes en 1982).

![Figure 14 ; Débarquements totaux de la pêche sardinière selon l’espèce](image-url)
6.3 Etat d’exploitation des stocks de petites pélagiques

6.3.1 Evolution des rendements de pêche

Mis à part le cas particulier de la sardinelle dont la situation notée à partir de 2001-2002 est à mettre en relation avec les licences octroyées annuellement par la Mauritanie, les rendements de pêche ou captures par unité d’effort (cpue) montrent généralement une succession de trois phases (Figure 15). Cette dynamique très perceptible pour les trois principales espèces (sardinelle ronde, sardinelle plate et ethmalose) met d’abord en exergue un développement considérable des pêcheries jusqu’à la fin de la première moitié des années 1990. Ensuite on note une période de stabilité des rendements à leurs niveaux maxima. Cette période de stabilité a été cependant plus courte pour la sardinelle car elle s’est seulement étalée sur cinq ans (1992-1997) durant lesquels les cpue oscillent autour de 2 500 kg par sortie. Pour la sardinelle plate et l’ethmalose, les rendements ont évolué autour de leurs maxima durant sept à huit (environ 2 000 kg par sortie pour la sardinelle plate et 700 kg par sortie pour l’ethmalose). Au cours de la troisième phase, les rendements de ces trois espèces sont nettement orientés à la baisse. Cette tendance récente reflète certainement la surexploitation des stocks désormais de plus en plus sujets à l’effondrement si la même pression de pêche est maintenue.

\[\text{Figure 15 : Evolution des rendements de pêche (cpue) selon l’espèce} \]

6.3.2 Evolution des tailles au débarquement

6.3.2.1 Evolution des tailles de la sardinelle ronde

Globalement jusqu’à la fin des années 90 la taille moyenne des individus de sardinelle ronde est restée relativement stable autour de 25 cm (Figure 16). On peut également noter que les individus débarqués à Saint Louis sont habituellement plus grands que ceux trouvés dans les autres centres. A partir de la deuxième moitié des années 90, la taille moyenne est orientée à
la baisse dans tous les centres. Dans le cas des centres de la Petite Côte (Mbour et Joal), cette baisse s'est poursuivie sur tout le reste de la période. Ainsi, la taille moyenne qui se situait autour de 26 cm en 1996-1997, se trouve actuellement aux environs de 22 cm. Par contre, au niveau de Saint Louis et de Hann, la taille moyenne s’est plutôt améliorée à partir de 2003. Cette amélioration serait probablement en rapport avec les captures faites dans les eaux mauritaniennes.

Figure 16 : Evolution des la taille moyenne de la sardinelle ronde

6.3.2.2 Evolution des tailles de la sardinelle plate
En ce qui concerne la sardinelle plate, la taille moyenne des individus débarqués dans les centres de pêche de la Petite Côte (fief de la pêcherie) est marquée par deux phases (Figure 17). Elle se caractérise par une hausse progressive jusqu’au début des années 90 suivie d’une diminution continue. Ainsi, alors qu’elle était autour de 25 cm au milieu des années 90, la taille moyenne de la sardinelle plate est actuellement aux environs de 20 cm. Comme dans le cas de la sardinelle ronde et notamment au niveau de la Petite Côte, le stock de sardinelle plate est donc affecté par une surexploitation de croissance depuis plus d’une décennie.
6.3.2.3 Évolution des tailles de l’ethmalose
De manière assez semblable à la sardinelle plate, la taille au débarquement de l’ethmalose dont l’exploitation se fait essentiellement à Joal a évolué en deux phases (Figure 18). La première étape se caractérise par une amélioration progressive de la taille moyenne des individus débarqués. Ainsi, la taille moyenne qui était aux environs de 23 cm au début des années 80 est passée au-dessus de 25 cm au début des années 90. A partir de la deuxième moitié des années 90, la taille moyenne est résolument orientée à la baisse. Cette tendance qui met également en évidence une surexploitation de croissance se traduit par une taille moyenne qui est actuellement descendue jusqu’aux environs de 20 cm.
6.3.3 Diagnostic de l’état des stocks

Les résultats publiés les plus récents sont ceux issus du groupe de travail du COPACE qui s’est réuni à Banjul, Gambie, du 18 au 22 mai 2010 (FAO, 2011). Les espèces évaluées à cet effet sont la sardine (Sardina pilchardus), les sardinelles (Sardinella aurita et Sardinella maderensis), les chincherds (Trachurus treca e et Trachurus trachurus), le maquereau (Scomber japonicus), l’éthmalose (Ethmalosa fimbriata) et l’anchois (Engraulis encrasicolus) dans la région située entre la frontière sud du Sénégal et la frontière Atlantique nord du Maroc.

En ce qui concerne la sardine (Sardina pilchardus) trois stocks ont été distingués lors de l’évaluation à savoir le stock Nord (35° 45’–32°N), le stock Central A+B (32°N–26°N) et le stock Sud C (26°N – extension sud de la distribution de l’espèce). L’ajustement du modèle a été peu satisfaisant pour la zone A+B. L’indice de biomasse a beaucoup fluctué au cours de la série chronologique considérée, en particulier durant les dernières années qui présentent des tendances inverses d’une année à l’autre. La situation du stock s’est améliorée en 2009 après avoir chuté en 2008. La capture tend par contre à augmenter sans interruption malgré les changements observés au niveau du stock. Les points de références relatifs à ce stock indiquent que la biomasse estimée la dernière année est à un niveau légèrement supérieur au niveau de la biomasse cible B0.1. La mortalité par pêche actuelle dépasse cependant le niveau de la mortalité par pêche qui donnerait une capture durable au niveau de biomasse actuelle (FMSYcur). Le stock est par conséquent pleinement exploité. Au niveau de la zone C, l’ajustement du modèle est satisfaisant. Les résultats montrent pour le stock C que la biomasse 2009 dépasse largement la biomasse cible B0.1 et que le niveau d’exploitation actuel est inférieur à F0.1. Malgré un accroissement de la capture au cours des dernières années, le stock se trouve dans un état d’exploitation modéré et il est considéré comme n’étant pas pleinement exploité.

Pour les sardinelles, le modèle de production a été appliqué à chaque espèce de sardinelle (S. aurita et S. maderensis) et les données combinées aux deux espèces ensemble (Sardinella spp.). Les résultats relatifs à S. maderensis ont révélé un ajustement faible du modèle aux données (indices d’abondance prévus et observés). Le Groupe de travail a par conséquent conclu que les résultats du modèle n’étaient pas satisfaisants et les résultats relatifs à cette espèce ne sont pas présentés. Pour Sardinella aurita, l’ajustement entre les indices d’abondance prévus et observés était faible, surtout celui des deux dernières années pour lesquelles les indices acoustiques ont augmenté malgré des captures élevées dans la pêcherie. L’écart constaté entre les indices d’abondance et les captures peut être expliqué à l’aide de plusieurs facteurs. Une explication possible réside dans la croissance inhabituelle du stock en 2008 grâce à des conditions environnementales favorables cette année-là. Afin de corriger
cette croissance, le Groupe de travail a décidé d’introduire dans le modèle un facteur environnemental positif pour 2008 comme cela avait été déjà fait pour l’année 1999. Cette correction permet d’améliorer l’ajustement pour 2008 mais l’écart demeure pour 2009. Qu’une correction environnementale soit appliquée ou non à l’année 2008, le modèle indique que les captures actuelles ne sont pas viables. On constate que le stock est encore au-dessus du niveau de biomasse produisant MSY (la production maximale équilibrée) mais que le niveau actuel des captures est environ deux fois supérieur à celui qui serait durable. Pour Sardinella spp. les résultats du modèle présentent à peu près les mêmes caractéristiques que ceux de S. aurita, exception faite de l’écart entre les indices d’abondance prévus et observés qui se limite dans ce cas aux seules deux dernières années de la série. Un facteur environnemental a également été appliqué ici pour l’année 2008 de façon à être cohérent avec l’analyse relative à S. aurita. Les résultats du modèle indiquent que le stock est actuellement au niveau qui produit MSY mais le niveau actuel des captures est largement supérieur à celui qui est durable pour ce stock.

En ce qui concerne l’éthmalose (Ethmalosa fimbriata), le Groupe de travail a maintenu le principe d’un stock unique. Dans la région, l’éthmalose est principalement concentrée au Sénégal, en Gambie et en Mauritanie. L’ajustement du modèle de production n’étant pas satisfaisant l’analyse de cohorte et de rendement par recrue a été effectuée. Les résultats obtenus ont révélé que la situation de la biomasse est à un niveau juste acceptable. En d’autres termes, ce stock est pleinement exploité. Toutefois, le Groupe de travail a débattu au sujet de la qualité et de la disponibilité de l’information pour finalement convenir qu’il y a un problème de manque de données dans les pays où Ethmalosa fimbriata est pêchée. En raison de ce manque de données biologiques et relatives à la taille des poissons, le Groupe de travail estime que les résultats obtenus des analyses doivent être envisagés avec prudence.

Dans le cas des chinchards, l’exploitation est concentrée sur trois espèces: le chinchard d’Europe (Trachurus trachurus), le chinchard du Cunène (Trachurus trecae) et le chinchard jaune (Caranx rhonchus). Ce dernier étant capturé de façon accessoire, l’évaluation s’est uniquement focalisée sur les données de capture et d’indices d’abondance obtenus par les campagnes acoustiques. Pour le cas de Trachurus trachurus l’ajustement du modèle utilisant l’indice Nansen est relativement satisfaisant. Les résultats indiquent que la biomasse 2009 correspond plus ou moins aux deux tiers de la biomasse B0,1. La mortalité par pêche actuelle est supérieure de 64 % à la mortalité par pêche F0,1. Le niveau de l’effort de pêche excède celui qui maintient le stock au niveau d’équilibre. L’effort actuel est environ 1,5 fois plus important que l’effort permettant d’optimiser la production maximum soutenable. Ces résultats mettent en évidence que le stock est surexploité. Pour Trachurus trecae l’ajustement du modèle est testé avec l’indice d’abondance les biomasses estimées par la série Nansen et avec les CPUE communiquées par les scientifiques russes. Les deux modèles donnent des
résultats proches, ce qui peut être considéré comme une bonne description de l’état du stock pour cette espèce. La biomasse estimée représente environ la moitié de la biomasse B₀.1. Le niveau d’effort de pêche dépasse de 26 % celui qui maintient le stock au niveau d’équilibre. L’effort actuel est supérieur à l’effort permettant la maximisation de la production soutenable (Fₘₛᵥ). Ces résultats mettent en évidence que le stock est désormais surexploité.

Dans le cas du maquereau (Scomber japonicus), deux stocks ont été identifiés en Afrique nord-occidentale: le stock Nord entre le Cap Boujdour et le nord du Maroc, le stock Sud entre le Cap Boujdour et le sud du Sénégal. Les résultats de l’ajustement du modèle global aux données de la série Nansen indiquent que la biomasse du stock courant est supérieure à la biomasse cible B₀.1. Le niveau d’exploitation actuel est d’environ 23 pour cent inférieur au niveau de F₀.1. Les résultats obtenus indiquent que le stock est pleinement exploité comme au cours de l’année précédente.

Dans le cas de l’anchois, en l’absence d’études sur l’identité des stocks de cette espèce, le Groupe de travail ne prend en compte qu’un seul stock pour l’ensemble de la sous-région. Le diagnostic du modèle indique que la mortalité par pêche courante est très proche de la mortalité par pêche correspondant à F₀.1. Les résultats montrent que le stock est pleinement exploité. Cependant, il ressort des discussions sur la qualité et la disponibilité des informations relatives à cette espèce que les données sont insuffisantes pour différentes zones de pêche et notamment en Mauritanie. Alors que les captures d’anchois en Mauritanie pourraient constituer plus de 85 pour cent de la capture totale de cette espèce dans la sous-région, aucune donnée biologique ou d’effort n’est disponible à leur sujet pour l’ensemble de la période. Au Maroc, les données biologiques ne sont disponibles que dans les zones Nord et A+B. Une incertitude demeure en outre quant à l’unité du stock. La valeur de la mortalité naturelle qui n’a été estimée qu’en Mauritanie a une forte influence sur les résultats du modèle. La courte espérance de vie des anchois, deux ans au maximum, est telle que l’abondance reste en effet tributaire des variations de recrutement et les résultats des campagnes acoustiques présentent des fluctuations des indices d’abondance. En raison des considérations précédemment énoncées, le diagnostic de pleine exploitation issu du modèle devra donc être considéré avec prudence.

7 Recommandations d’aménagement et perspectives de recherche

7.1.1 Recommandations d’aménagement

Compte tenu des fluctuations de la biomasse du stock A+B il a été recommandé de maintenir la capture à un niveau de 400 000 tonnes. Pour le stock C, un accroissement des captures est possible. Il faudrait toutefois adopter une approche de précaution en ce qui concerne les niveaux de prélèvements à réaliser sur ce stock. Tout accroissement du niveau de capture devrait en effet faire l’objet d’ajustements annuels prenant en compte les fluctuations naturelles de la productivité de ce stock.

Pour les sardinelles, les scientifiques considèrent que les captures actuelles ne sont pas durables et qu’elles doivent être réduites de façon à éviter un épuisement futur du stock (FAO, 2011). Il a été recommandé d’adopter des mesures de précaution avec une capture totale autorisée de 220 000 tonnes de *S. aurita*. Ainsi, une réduction de l’effort de pêche sur les deux espèces de sardinelles doit être adoptée. Dans cette optique, les gouvernements de la sous-région ne devraient pas accorder de nouvelles licences de pêche des sardinelles dans les années futures.

En ce qui concerne l’ethmalose, les scientifiques optent pour une approche de précaution (FAO, 2011). Ils ont alors recommandé que la capture et l’effort au Sénégal et en Gambie ne dépassent pas les niveaux de 2009.

Dans le cas des chinchards, il a été signalé que les pêcheries concernées sont multispécifiques et ciblent les deux espèces de *Trachurus* (FAO, 2011). Etant donné la situation de surexploitation des chinchards, le Groupe de travail propose de réduire l’effort de pêche de 20 % par rapport à 2009. Il est recommandé que la capture ne dépasse pas 330 000 tonnes, ce qui correspond au chiffre déjà suggéré en 2008 lorsque l’une des deux espèces était pleinement exploitée.

Pour le maquereau, une amélioration des indices de biomasse et de recrutement a été constatée (FAO, 2011). Cette situation incite les scientifiques à proposer de maintenir les captures à leur niveau moyen des cinq dernières années à savoir de 230 000 tonnes.

En ce qui concerne l’anchois, dans l’attente d’une meilleure identification des stocks dans la sous-région et de statistiques de pêche plus fiables, le Groupe de travail recommande comme approche de précaution de ne pas augmenter l’effort et la capture à savoir 116 000 tonnes (FAO, 2011).

Le tableau ci-dessous (Tableau 1) fait la synthèse des résultats du diagnostic sur l’état d’exploitation des petits pélagiques ainsi que les recommandations en matière d’aménagement des pêcheries ((FAO, 2011)).
Tableau 1 : Etat d’exploitation des stocks et recommandations d’aménagement

<table>
<thead>
<tr>
<th>Stock</th>
<th>Captures de la dernière année (2009) en milliers de tonnes (moy. 2005-2009)</th>
<th>Bcur/B0.1</th>
<th>Fcur/F0.1</th>
<th>Diagnostic</th>
<th>Recommandations d’aménagement</th>
</tr>
</thead>
</table>
| Chinchard
T. trachurus
T. trecae | 120 (107)
347 (308) | 72%
53% | 164%
| Maquereau
Scomber japonicus | 244 (231) | 130%
131% (ICA) | 77%
60% (ICA) | Pleinement exploité | Le Groupe de travail recommande que le niveau de capture ne dépasse pas celui de la capture moyenne des cinq dernières années (2005-2009), c’est-à-dire 200 000 tonnes. |
| Anchois
Engraulis encrasicolus | 116 (116) | ND | 107% (LCA) | Pleinement exploité | A titre de précaution, le niveau d’effort n’a jamais été régulièrement couvert par le système d’enquête sur les pêcheries. Il est donc urgent qu’un système d’enquête opérationnel soit mis en place. Pour bâtir un système adapté aux réalités de cette zone, il est indispensable de procéder préalablement à une étude diagnostique sur la physionomie de l’exploitation de l’éthmalose au Sine-Saloum (zones de pêche, méthode de pêche, lieux de débarquement, saisonnalité des activités de pêche, etc.). |
| Éthmalose
Ethmalosa fimbriata | 21 (24) | ND | - | Pleinement exploité | A titre de précaution, le niveau d’effort en Gambie et au Sénégal ne devrait pas dépasser celui de 2009. |

Bcur/B0.1: Rapport entre la biomasse estimée pour la dernière année et la biomasse correspondante à F0.1.
Fcur/F0.1: Rapport entre le coefficient de mortalité par pêche effectivement observé la dernière année et F0.1.

7.1.2 Perspectives de recherche

En fonction des lacunes en terme de connaissances sur la bioécologie des petits pélagiques d’une et de la dynamique des pêcheries et de l’état d’exploitation des stocks d’autre part, les perspectives de recherche suivantes doivent faire l’objet d’une attention particulière.

- Les données statistiques sur les pêcheries et les connaissances empiriques montrent que l’exploitation de l’éthmalose est plus intense dans le Sine-Saloum avec notamment une forte concentration des filets maillants encerclants qui ciblent essentiellement cette espèce. Pourtant cette zone n’a jamais été régulièrement couverte par le système d’enquête sur les pêcheries. Il ya donc de réelles lacunes de données statistiques qui puissent permettent de mieux caractériser la dynamique des pêcheries et l’état d’exploitation de l’éthmalose. Il est donc urgent qu’un système d’enquête opérationnel soit mis en place. Pour bâtir un système adapté aux réalités de cette zone, il est indispensable de procéder préalablement à une étude diagnostique sur la physionomie de l’exploitation de l’étualose au Sine Saloum (zones de pêche, méthode de pêche, lieux de débarquement, saisonnalité des activités de pêche, etc.).

- Les connaissances scientifiques disponibles ont montré que dans la sous région, les estuaires du Sine-Saloum et de la Gambie sont les milieux essentiels à la survie de l’éthmalose. Malheureusement ces zones sont pourtant très mal couvertes par les activités de recherche biologique en cours dans la sous région. Ainsi, des efforts doivent être faits pour produire plus de connaissance sur les paramètres bioécologiques des individus concentrés dans ces estuaires.

- Les petits pélagiques sont très inféodés aux conditions hydroclimatiques. Ainsi, les facteurs physico-chimiques du milieu jouent un rôle vital dans leur bioécologie (reproduction,
alimentation, croissance, migration, etc.). Ainsi, on peut craindre que les changements climatiques entraînent probablement des bouleversements dans l’abondance de ces espèces dans la sous-région de façon générale et sur les côtes sénégalaises en particulier. Ainsi, la recherche doit anticiper sur ce phénomène en envisageant une évaluation rigoureuse des risques bio-écologiques liés aux changements climatiques.

- Capables de fournir des données scientifiques indispensables à la bonne compréhension de la dynamique des petits pélagiques, les campagnes acoustiques sont essentielles à la caractérisation de l’abondance des stocks. Pourtant, contrairement aux autres pays de la sous-région (Maroc et Mauritanie notamment) la régularité de ces campagnes dans les eaux Sénégalaises est très souvent compromise malgré l’existence d’un navire de recherche au Sénégal. Il est donc nécessaire d’intensifier de telles campagnes acoustiques pour accroître la disponibilité des données scientifiques sur les petits pélagiques au Sénégal et en Gambie.
Références bibliographiques

44

Schaefer, M., 1954. Some aspects of the dynamics of populations important to the management of the
